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In this paper, we present a method to project co-authorship networks, that accounts in detail for the geo-
metrical structure of scientists’ collaborations. By restricting the scope to three-body interactions, we focus on
the number of triangles in the system, and show the importance of multi-scientist �more than two� collabora-
tions in the social network. This motivates the introduction of generalized networks, where basic connections
are not binary, but involve arbitrary number of components. We focus on the three-body case and study
numerically the percolation transition.
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I. INTRODUCTION

It is well known in statistical physics that N-body corre-
lations have to be carefully described in order to characterize
statistical properties of complex systems. For instance, in the
case of the Liouville equation for Hamiltonian dynamics, this
problem is at the heart of the derivation of the reduced
BBGKY hierarchy, thereby leading to the Boltzmann and
Enskog theories for fluids �1�. In this line of thought, it is
primordial to discriminate N-body correlations that are in-
trinsic N-body interactions from those that merely develop
from lower order interactions. This issue is directly related to
a well-known problem in complex network theory, i.e., the
“projection” of bipartite networks, i.e., composed of two
kinds of nodes, onto unipartite networks, i.e., composed of
one kind of node. As a paradigm for such systems, people
usually consider co-authorship networks �2–4�, namely net-
works whose nodes are scientists and articles, with links run-
ning between scientists and the papers they wrote. In that
case, the usual projection method �5� consists in focusing,
e.g., on the scientist nodes and in drawing a link between
them if they co-authored a common paper �see Fig. 1�. As a
result, the projected system is a unipartite network of scien-
tists that characterizes the community structure of science
collaborations. Such studies have been very active recently,
due to their complex social structure �6�, to the ubiquity of
such bipartite networks in complex systems �7–9�, and to the
large databases available.

A standard quantity of interest in order to characterize the
structure of the projected network is the clustering coeffi-
cient �10�, which measures network “transitivity,” namely
the probability that two co-authors of a scientist have them-
selves co-authored a paper. In topological terms, it is a mea-
sure of the density of triangles in a network, a triangle being
formed every time two of one’s collaborators collaborate
with each other. This coefficient is usually very high in sys-
tems where sociological cliques develop �11�. However, part
of the clustering in the co-authorship network is due to pa-
pers with three or more co-authors. Such papers introduce

trivial triangles of collaborating authors �see Fig. 1�, thereby
increasing the clustering coefficient. This problem, that was
raised by Newman et al. �5�, was circumvented by studying
directly the bipartite network, in order to infer the authors’
community structure. Newman et al. showed on some ex-
amples that these high-order interactions may account for
one half of the clustering coefficient. One should note, how-
ever, that if this approach offers a well-defined theoretical
framework for bipartite networks, it suffers a lack of trans-
parency as compared to the original projection method, i.e.,
it does not allow a clear visualization of the unipartite struc-
ture.
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FIG. 1. Usual projection method of the bipartite graph on a
unipartite scientists graph. Nonbijectivivity of the application sim-
plifies the structure of the network, thereby hiding, amongst others,
the signification of triangles in the unipartite scientists graph.
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In this article, we propose an alternative approach that is
based on a more refined unipartite projection and follows
statistical mechanics usual expansion methods. To do so, we
focus on a data set, retrieved from the arXiv database and
composed of articles dedicated to complex network theory.
This choice is motivated by their relatively few co-authors
per article, a property typical to theoretical physics papers
�12�. Our method consists in discriminating the different
kinds of scientist collaborations, based upon the number of
co-authors per article. This discrimination leads to a diagram
representation �13,14� of co-authorship �see also �15� for the
applicability of Feynman diagrams in complex networks�.
The resulting N-body projection reconciles the visual fea-
tures of the usual projection and the exact description of
Newman’s theoretical approach. Empirical results confirm
the importance of high-order collaborations in the network
structure. Therefore, we introduce in the last section a simple
network model, which is based on random triangular connec-
tions between the nodes. We study numerically percolation
features in the model.

II. N-BODY PROJECTION METHOD

The data set contains all articles from arXiv in the time
interval �1995:2005� that contain the word “network” in their
abstract and are classified as “cond-mat”�. In order to dis-
criminate the authors and avoid spurious data, we checked
the names and the first names of the authors. Moreover, in
order to avoid multiple ways for an author to co-sign a paper,
we also took into account the initial notation of the pre-
names. For instance, Marcel Ausloos and M. Ausloos are the
same person, while Marcel Ausloos and Mike Ausloos are
considered to be different. Let us stress that this method may
lead to ambiguities if an initial refers to two different first
names, e.g., M. Ausloos might be Marcel Ausloos or Mike
Ausloos. Nonetheless, we have verified that this case occurs
only once in the data set �Hawoong Jeong, Hyeong-Chai
Jeong, and H. Jeong�, so that its effects are negligible. In
that sole case, we attributed the papers of H. Jeong to the
most prolific Jeong, i.e., Hawoong Jeong in the data set.
Given this identification method, we find nP=2533 persons
and nA=1611 articles. By using the projection method of Fig.
1, the author network is made of a large connected island
composed of 567 scientists and by a multitude of small dis-
connected clusters �Fig. 2�. The size s distribution of the
clusters �Fig. 3� shows a power law decrease �s−2, compat-
ible with the observations of �16�. Let us also stress that the
distribution of the number of co-authors per article �Fig. 4�
shows clearly a rapid exponential decrease, associated to a
clear predominance of small collaborations.

Formally, the bipartite structure authors-papers may be
mapped exactly on the vector of matrices M defined by

M = �M�1�,M�2�, . . . ,M�j�,… . ,M�nP�� �1�

where M�j� is a square nP
j matrix that accounts for all articles

co-authored by j scientists. By definition, the element Ma1¯aj

�j�

is equal to the number of articles co-authored by the j au-
thors a1 , . . . ,aj. In the following, we assume that co-

authorship is not a directed relation, thereby neglecting the
position of the authors in the collaboration, e.g., whether or
not the author is the first author. This implies that the matri-
ces are symmetric under permutations of indices. Moreover,
as people cannot collaborate with themselves, the diagonal
elements Maa¯a

�j� vanish by construction. For example, Ma1

�1�

and Ma1a2

�2� represent respectively the total number of papers
written by a1 alone, and the total number of papers written
by the pair �a1 ,a2�.

A way to visualize M consists in a network whose nodes
are the scientists and whose links are discriminated by their
shape. The intrinsic co-authorship interactions form loops
�order 1�, lines �order 2�, triangles �order 3� �see Fig. 5�,… .
To represent the intensity of the multiplet interaction, the
width of the lines is taken to be proportional to the number
of collaborations of this multiplet. Altogether, these rules
lead to a graphical representation of M that is much more
refined than the usual projection method �Fig. 6�.

It is important to point out that the vector of matrices M
describes without approximation the bipartite network, and

FIG. 2. Network of scientists having written a “network” article
in the time interval �1995:2005� �see text for data acquisition�. The
main island of co-authors is composed by 567 authors and 1325
links.

FIG. 3. Histogram of the size s of the disconnected islands of
Fig. 2. The dashed line �s−2 is a guide for the eye. The extreme
event at s=567 corresponds to the main island.
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that it reminds the Liouville distribution in phase space of a
Hamiltonian system. Accordingly, a relevant macroscopic
description of the system relies on a coarse-grained reduction
of its internal variables. The simplest reduced matrix is the
one-scientist matrix R�1� that is obtained by summing over
the N-body connections, N�2. R�1� is a nP vector for which
the element a1 is

Ra1

�1� = Ma1
�1� + �

a2

Ma1a2

�2� + �
a2

�
a3�a2

Ma1a2a3

�3� + ¯

+ �
a2

¯ �
aj�aj−1

Ma1¯aj

�j� + ¯ . �2�

It is straightforward to show that the elements Raj

�1� denote the
total number of articles written by the scientist aj. The sec-
ond order �nP�nP� matrix is

Ra1a2

�2� = Ma1a2

�2� + �
a3

Ma1¯a3

�3� + ¯

+ �
a3

¯ �
aj�aj−1

Ma1¯aj

�j� + ¯ . �3�

Its elements represent the total number of articles written by

the pair of scientists �a1 ,a2�. Remarkably, this matrix repro-
duces the usual projection method �Fig. 1� and obviously
simplifies the structure of the bipartite structure by hiding the
effect of high-order connections. The three-scientist matrix
reads similarly

Ra1a2a3

�3� = Ma1a2a3

�3� + �
a4

Ma1¯a4

�4� + ¯

+ �
a4

¯ �
aj�aj−1

Ma1¯aj

�j� + ¯ . �4�

This new matrix counts the number of papers co-written by
the triplet �a1 ,a2 ,a3� and may be represented by a network
whose links are triangles relating three authors. The gener-
alization to higher order matrices R�j� is straightforward, but,
as in the case of the BBGKY hierarchy, a truncature of the
vector M must be fixed at some level in order to usefully
and compactly describe the system. It is therefore important
to point out that the knowledge of M�2� together with R�3� is
completely sufficient in order to characterize the triangular
structure of M. Consequently, in this paper, we stop the
reduction procedure at the three-body level and define the
triangular projection of M by the application

�Ma1
�1�,Ma1a2

�2� ,Ma1a2a3

�3� ,…,Ma1. . .anP

�nP� � → �Ma1
�1�,Ma1a2

�2� ,Ra1a2a3

�3� � .

�5�

The triangular projection is depicted in Fig. 7 and is com-
pared to the usual projection method.

In order to test the relevance of this description, we have
measured in the data set the total number of triangles

FIG. 4. Histogram of the number of scientists/articles, n, for the
same data as in Fig. 2. The dashed line corresponds to the fit e−n/1.5.

FIG. 5. Graphical representation of the four most basic authors’
interactions, namely, 1, 2, 3, 4 co-authorships.

FIG. 6. Graphical representation of the co-authorship network.
This small subnetwork accounts for one two-author collaboration
�Timme, Ashwin�; four three-author collaborations, three times the
triplet �Timme, Wolf, Geisel� depicted by stronger links and once
�Geisel, Hufnagel, Brockmann�; one four-author collaboration
�Timme, Wolf, Geisel, Zumdieck�.
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generated by edges. We discriminate two kinds of triangles:
those which arise from one three-body interaction of R�3�

and those which arise only from an interplay of different
interactions. There are respectively 5550 and 30 such tri-
angles, namely 99.5% of triangles are of the first kind. This
observation by itself therefore justifies the detailed projection
method introduced in this section and shows the importance
of co-authorship links geometry in the characterization of
network structures, precisely the clustering coefficient in the
present case.

III. TRIANGULAR ERDÖS-RÉNYI NETWORKS

The empirical results of the previous section have shown
the significance of N-body connections in social networks. A
more complete framework for networks is therefore required
in order to describe correctly the system complexity. In this
article, we focus on the most simple generalization, namely a
network whose links relate triplets of nodes. To do so, we
base our modeling on the Erdös-Rényi uncorrelated random
graph �17�, i.e., the usual prototype to be compared with
more complex random graphs. The usual Erdös-Rényi net-

FIG. 7. Three-body projection of the bipartite network. For the sake of clarity, we focus on a small subcluster, centered around the
collaborations of Newman. The upper figure is the usual projection method of Fig. 1. The lower figure is the triangular projection �4� of the
same bipartite network.
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work �ERN� is composed by Nn labeled nodes connected by
Ne

�2� edges, which are chosen randomly from the
Nn�Nn−1� /2 possible edges. In this paper, we define the tri-
angular ER network �ERN�3�� to be composed by Nn labeled
nodes, connected by Ne

�3� triangles, which are chosen ran-
domly from the Nn�Nn−1��Nn−2� /6 possible triangles. As a
result, connections in the system relate triplets of nodes
�a1 ,a2 ,a3�, and the matrix vector M reduces to the matrix
M�3�. Before going further, let us point out that the clustering
coefficient of triangular ER networks is very high by con-
struction, but, contrary to intuition, it is different from 1 in
general. For instance, for the two triplets �a1 ,a2 ,a3� and
�a1 ,a4 ,a5�, the local clustering coefficient of a1 is equal to 1

3 .
In this paper, we focus numerically on the percolation

transition �18� in ERN�3�, i.e., on the appearance of a giant
component by increasing the number of links in the system
�Fig. 8�. This transition is usually associated with dramatic
changes in the topological structure, which are crucial to
ensure communicability between network nodes, e.g., the
spreading of scientific knowledge in the case under study. In
the following, we work at a fixed number of nodes and focus
on the proportion of nodes in the main cluster as a function
of the number of binary links in the system. Moreover, in
order to compare results with the usual ERN, we do not
count twice redundant links, i.e., couples of authors who
interact in different triplets. For instance, the triplet
�a1 ,a2 ,a3� accounts for three binary links, but �a1 ,a2 ,a3�
and �a1 ,a2 ,a4� account together for five links, so that

FIG. 7. �Continued�.
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FIG. 8. Percolation transition in a triangular Erdös-Rényi network �see text for definition� made of 50 nodes, from a dilute phase with
small disconnected islands �8 triangles� to a percolated phase with one giant cluster �20 triangles�.
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Ne
�2��3Ne

�3� in general. Let us note, however, that this de-
tailed counting has small effects on the location of the per-
colation transition. Numerical results are depicted in Fig. 9,
where we consider networks with Nn=1000 and where 50
realizations of the simulations have been performed for each

value of the number of links/node in order to improve the
statistics. Obviously, the triangular structure of interactions
displaces the bifurcation point, by requiring more links in
order to observe the percolation transition. This feature
comes from the triangular structure of connections that re-
strains the network exploration as compared to random struc-
tures. Indeed, three links relate only three nodes in ERN�3�,
while three links relate at least three nodes in ERN �Fig. 10�.
Finally, let us stress that the same mechanism takes place in
systems with high clustering coefficients �19,20�.

IV. CONCLUSION

In this paper, we show the importance of N-body interac-
tions in co-authorship networks. By focusing on data sets
extracted from the arXiv database, we introduce a way to
project bipartite networks onto unipartite networks. This ap-
proach generalizes usual projection methods by accounting
for the complex geometrical figures connecting authors. To
do so, we present a simple theoretical framework and define
N-body reduced and projected networks. The graphical rep-
resentation of these simplified networks rests on a “shape-
based” discrimination of the different co-authorship interac-
tions �for a “color-based” version, see the first author’s
website �21�� and allows a clear visualization of the different

FIG. 9. Proportion of nodes in the main island, as a function of
the number of links/node, in the ERN and the ERN�3� model. The
networks are composed of 1000 nodes.

FIG. 10. Different ways to distribute three
links in a network, thereby connecting from three
to six nodes. Obviously, only the first case �three
nodes� occurs in a triangular Erdös-Rényi
network.
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mechanisms occurring in the system. Finally, we apply the
method to some arXiv data subset, thereby showing the im-
portance of such “high-order corrections” in order to charac-
terize the community structure of scientists. The empirical
results motivate therefore a better study of networks with
complex weighted geometrical links. In the last section, we
focus on the simplest case by introducing a triangular ran-
dom model, ERN�3�, and restrict the scope by analyzing the
effect of the three-body connection on percolation. A com-
plete study of the topological of ERN�3� as well as its gener-

alization to higher order connections is left for a forthcoming
work.
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